fHinfbalreal

The function [G_\mathrm{b},T_\mathrm{b} ,T_\mathrm{bi}]=fHinfbalreal(G) computes the H_\infty balanced realization for the stable system G=ss(A,B,C,D).

As output you obtain the H_\infty balanced realization

    \[G_\mathrm{b}=\left[\begin{array}{c|c}T_\mathrm{b}AT_\mathrm{bi}& T_\mathrm{b}B\\\hline CT_\mathrm{bi}&D\end{array}\right]\]

with T_\mathrm{bi}=T_\mathrm{b}^{-1}.

The balancing proceeds as follows:

  1. First, the function computes the H_\infty-norm, \gamma of the stable system G.
  2. With

        \[\begin{array}{c}D_h^TD_h=-\left(\frac{1}{\gamma}D^TD-\gamma I\right)\prec0\\D_cD_c^T=-\left(\frac{1}{\gamma}DD^T-\gamma I\right)\prec0\end{array}\]

    compute the solutions of the algebraic Riccati (ARE) equations

        \[\begin{array}{c}XA+A^TX+\frac{1}{\gamma}C^TC+\left(\bullet}\right)^T\!\!\left(D_h^TD_h-\gamma I\right)^{-1}\!\!\left(XB+\frac{1}{\gamma}C^TD\right)\\AY+YA^T+\frac{1}{\gamma}BB^T+\left(\bullet\right)^T\!\!\left(D_cD_c^T-\gamma I\right)^{-1}\!\!\left(XC^T+\frac{1}{\gamma}BD^T\right)\end{array},\]

    which are guaranteed to have a solution X and Y respectively.
  3. These solutions can now be used to perform a standard balancing.

Previous page