fMultiplext


The function [P_\mathrm{e},Q_\mathrm{e},S_\mathrm{e},R_\mathrm{e}]=fMultiplext(P_\mathrm{p}, P_\mathrm{d},n_\mathrm{pos} ,n_\mathrm{neg},type) constructs the extended full-block multiplier

    \[P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right).\]

Here the inputs should satisfy the following constraints:

  • P_\mathrm{p}=\left(\begin{array}{cc}Q_\mathrm{p}&S_\mathrm{p}\\S_\mathrm{p}^T &R_\mathrm{p}\end{array}\right) with Q_\mathrm{p}\succ0 and R_\mathrm{p}\prec0
  • P_\mathrm{d}=\left(\begin{array}{cc}Q_\mathrm{d}&S_\mathrm{d}\\S_\mathrm{d}^T &R_\mathrm{d}\end{array}\right) with Q_\mathrm{d}\succ0 and R_\mathrm{d}\prec0
  • n_\mathrm{pos} denotes the number of positive eigenvalues of P_\mathrm{p} (this equals the size of Q_\mathrm{p})
  • n_\mathrm{neq} denotes the number of negative eigenvalues of P_\mathrm{p} (this equals the size of R_\mathrm{p})
  • type specifies the type of extention:
    • type\in\{1,2,3\}:

          \[P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)\]

      is such that

          \[P_\mathrm{e}^{-1}=\left(\begin{array}{cccc}Q_\mathrm{e}&\star&S_\mathrm{e}&\star\\ \star&\star&\star&\star\\ S_\mathrm{e}^T&\star&R_\mathrm{e}&\star\\ \star&\star&\star&\star\end{array}\right)\]

    • type\in\{4,5,6\}:

          \[P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{d}&S_\mathrm{d}\\ S_\mathrm{d}^T&R_\mathrm{d}\end{array}\right)\]

      is such that

          \[P_\mathrm{e}^{-1}=\left(\begin{array}{cccc}Q_\mathrm{di}&\star&S_\mathrm{di}&\star\\ \star&\star&\star&\star\\ S_\mathrm{di}^T&\star&R_\mathrm{di}&\star\\ \star&\star&\star&\star\end{array}\right)\]

      with

          \[P_\mathrm{d}^{-1}=\left(\begin{array}{cc}Q_\mathrm{d}&S_\mathrm{d}\\ S_\mathrm{d}^T&R_\mathrm{d}\end{array}\right)^{-1}=\left(\begin{array}{cc}Q_\mathrm{di}&S_\mathrm{di}\\ S_\mathrm{di}^T&R_\mathrm{di}\end{array}\right)\]

Let J=\left(\begin{array}{cc}I_{n_\mathrm{pos}}&0_{n_\mathrm{pos}\times n_\mathrm{neq}}\end{array}\right)^T and \tilde{J}=\left(\begin{array}{cc}0_{n_\mathrm{neg}\times n_\mathrm{pos}}&I_{n_\mathrm{neg}}\end{array}\right)^T. Then the different types are defined as follows:

TypeDescription
type=1Define P_\mathrm{i}=(P_\mathrm{p}- P_\mathrm{d}^{-1})^{-1} and let T=\left(\begin{array}{cc}T_1&T_2\end{array}\right) where T_1 is the collection of eigenvectors corresponding to the positive eigenvalues of \mathrm{eig}(P_\mathrm{i}-J(J^TP_\mathrm{p}J)^{-1}J^T) and T_2 is the collection of eigenvectors corresponding to the negative eigenvalues of \mathrm{eig}(P_\mathrm{i}-\tilde{J}( \tilde{J}^T P_\mathrm{p} \tilde{J})^{-1}\tilde{J}^T).

Then P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)= \left(\begin{array}{cc} P_\mathrm{p}&T\\T^T&T^TP_\mathrm{i}T\end{array}\right).
type=2Define P_\mathrm{i}=(P_\mathrm{p}-P_\mathrm{d}^{-1})^{-1} and let T=\left(\begin{array}{cc}T_1&T_2\end{array}\right) where T_1 is the collection of eigenvectors corresponding to the positive eigenvalues of \mathrm{eig}(P_\mathrm{i}-P_\mathrm{i}J(J^TP_\mathrm{p}J)^{-1}J^T P_\mathrm{i}) and T_2 is the collection of eigenvectors corresponding to the negative eigenvalues of \mathrm{eig}(P_\mathrm{i}- P_\mathrm{i}\tilde{J}( \tilde{J}^T P_\mathrm{p} \tilde{J})^{-1}\tilde{J}^TP_\mathrm{i}).

Then P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)= \left(\begin{array}{cc} P_\mathrm{p}& P_\mathrm{i}T\\T^T P_\mathrm{i} &T^TP_\mathrm{i}T\end{array}\right).
type=3– Factorize P_\mathrm{p}=M_\mathrm{p}^TJ_\mathrm{p}M_\mathrm{p} and P_\mathrm{d}=M_\mathrm{d}^TJ_\mathrm{d}M_\mathrm{d} with J_\mathrm{p}=\mathrm{diag}(I,-I) and J_\mathrm{d}=\mathrm{diag}(I,-I) respectively and define M_\mathrm{pi}=M_\mathrm{p}^{-1} and M_\mathrm{di}= M_\mathrm{d}^{-1}
– Define U\Sigma V^T=M_\mathrm{di}^TM_\mathrm{pi}-J_\mathrm{d} M_\mathrm{d}M_\mathrm{p}^TJ_\mathrm{p} with U\Sigma V^T begin the singular value decomposition. Also denote by S_\mathrm{d}=U\Sigma^{\frac{1}{2}} and S_\mathrm{p}=C\Sigma^{\frac{1}{2}}
– Let T=\left(\begin{array}{cc}T_1&T_2\end{array}\right) where T_1 and T_2 respectively denote the collection of eigenvectors corresponding to the positive and negative eigenvalues of
\mathrm{eig}(-S_\mathrm{d}^{-1}J_\mathrm{d}M_\mathrm{d}M_\mathrm{p} ^T S_\mathrm{p} -S_\mathrm{p}^TM_\mathrm{p}J(J^TP_\mathrm{p}J)^{-1}J^T M_\mathrm{p}^TS_\mathrm{p})
\mathrm{eig}(-S_\mathrm{d}^{-1}J_\mathrm{d}M_\mathrm{d}M_\mathrm{p} ^T S_\mathrm{p} -S_\mathrm{p}^TM_\mathrm{p}\tilde{J}( \tilde{J}^T P_\mathrm{p} \tilde{J} )^{-1} \tilde{J}^TM_\mathrm{p}^TS_\mathrm{p})

Then
P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)=
=\left(\begin{array}{cc}M_\mathrm{pi}^T&0\\ J_\mathrm{d}M_\mathrm{d} &S_\mathrm{d}T^{-T}\end{array}\right)^{-1}\left(\begin{array}{cc} J_\mathrm{p} M_\mathrm{p}&S_\mathrm{p}T\\ M_\mathrm{di} &0\end{array}\right)
type=4Define P_\mathrm{i}=(P_\mathrm{p}- P_\mathrm{d})^{-1} and let T=\left(\begin{array}{cc}T_1&T_2\end{array}\right) where T_1 is the collection of eigenvectors corresponding to the positive eigenvalues of \mathrm{eig}(P_\mathrm{i}-J(J^TP_\mathrm{p}J)^{-1}J^T) and T_2 is the collection of eigenvectors corresponding to the negative eigenvalues of \mathrm{eig}(P_\mathrm{i}-\tilde{J}( \tilde{J}^T P_\mathrm{p} \tilde{J})^{-1}\tilde{J}^T).

Then P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)= \left(\begin{array}{cc} P_\mathrm{p}&T\\T^T&T^TP_\mathrm{i}T\end{array}\right).
type=5Define P_\mathrm{i}=(P_\mathrm{p}-P_\mathrm{d})^{-1} and let T=\left(\begin{array}{cc}T_1&T_2\end{array}\right) where T_1 is the collection of eigenvectors corresponding to the positive eigenvalues of \mathrm{eig}(P_\mathrm{i}-P_\mathrm{i}J(J^TP_\mathrm{p}J)^{-1}J^T P_\mathrm{i}) and T_2 is the collection of eigenvectors corresponding to the negative eigenvalues of \mathrm{eig}(P_\mathrm{i}- P_\mathrm{i}\tilde{J}( \tilde{J}^T P_\mathrm{p} \tilde{J})^{-1}\tilde{J}^TP_\mathrm{i}).

Then P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)= \left(\begin{array}{cc} P_\mathrm{p}& P_\mathrm{i}T\\T^T P_\mathrm{i} &T^TP_\mathrm{i}T\end{array}\right).
type=6– Factorize P_\mathrm{p}=M_\mathrm{p}^TJ_\mathrm{p}M_\mathrm{p} and P_\mathrm{d}=M_\mathrm{d}^TJ_\mathrm{d}M_\mathrm{d} with J_\mathrm{p}=\mathrm{diag}(I,-I) and J_\mathrm{d}=\mathrm{diag}(I,-I) respectively and define M_\mathrm{pi}=M_\mathrm{p}^{-1} and M_\mathrm{di}= M_\mathrm{d}^{-1}
– Define U\Sigma V^T=M_\mathrm{d}^TM_\mathrm{pi}-J_\mathrm{d} M_\mathrm{di}M_\mathrm{p}^TJ_\mathrm{p} with U\Sigma V^T begin the singular value decomposition. Also denote by S_\mathrm{d}=U\Sigma^{\frac{1}{2}} and S_\mathrm{p}=C\Sigma^{\frac{1}{2}}
– Let T=\left(\begin{array}{cc}T_1&T_2\end{array}\right) where T_1 and T_2 respectively denote the collection of eigenvectors corresponding to the positive and negative eigenvalues of
\mathrm{eig}(-S_\mathrm{d}^{-1}J_\mathrm{d}M_\mathrm{d}M_\mathrm{p}^T S_\mathrm{p} -S_\mathrm{p}^TM_\mathrm{p}J(J^TP_\mathrm{p}J)^{-1}J^T M_\mathrm{p}^TS_\mathrm{p})
\mathrm{eig}(-S_\mathrm{d}^{-1}J_\mathrm{d}M_\mathrm{d}M_\mathrm{p} ^T S_\mathrm{p} -S_\mathrm{p}^TM_\mathrm{p}\tilde{J}( \tilde{J}^T P_\mathrm{p} \tilde{J} )^{-1} \tilde{J}^TM_\mathrm{p}^TS_\mathrm{p})

Then
P_\mathrm{e}=\left(\begin{array}{cc}Q_\mathrm{e}&S_\mathrm{e}\\ S_\mathrm{e}^T&R_\mathrm{e}\end{array}\right)=
=\left(\begin{array}{cc}M_\mathrm{pi}^T&0\\ J_\mathrm{d}M_\mathrm{di}^T &S_\mathrm{d}T^{-T}\end{array}\right)^{-1}\left(\begin{array}{cc} J_\mathrm{p} M_\mathrm{p}&S_\mathrm{p}T\\M_\mathrm{d} &0\end{array}\right)

Previous page