Robust estimator design for a mass-spring-damper system

The file Demo_014.m is found in IQClab’s folder demos; it performs a robust estimator synthesis with the function fRobest for a mass-spring-damper problem derived from the example presented in [24]. The setup is shown in the following figure.

Mass-spring-damper system

The numerical values are m_1=1, m_2=0.5, k_1=1, k_2=1+0.5\delta_\mathrm{k} and c=2+1.75\delta_\mathrm{c} with \delta_\mathrm{k},\delta_\mathrm{c}\in[-1,1]. The first mass is disturbed by an external force w_1. The objective is to estimate x_2 using a measument of x_1 corrupted by measurement noise w_2. The linear fractional representation can then be written as

\left(\!\!\begin{array}{c}q_\mathrm{c}\\q_\mathrm{k}\\z\\y\end{array}\!\!\right)= \left[\!\!\begin{array}{cccc|cccc}0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ -2&1&-2&2&-1.75&-0.5&1&0\\ 2&-2&4&-4&3.5&1&0&0\\ \hline 0&0&1&-1&0&0&0&0\\ 1&-1&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 1&0&0&0&0&0&0&1\end{array}\!\!\right] \left(\!\!\begin{array}{c}p_\mathrm{c}\\p_\mathrm{k}\\w_1\\w_2\end{array}\!\!\right)

with p_\mathrm{c}=\delta_\mathrm{c} q_\mathrm{c}, p_\mathrm{k}=\delta_\mathrm{k} q_\mathrm{k}.

For comparison reasons, we design a nominal H_2 estimator, E_\mathrm{nom}, using the function ‘h2syn’, which is part of MATLAB’s robust control toolbox, as well as a robust H_2 estimator, E_\mathrm{rob}, using the function ‘fRobest’, which is part of IQClab.

The code for designing the nominal estimator is found in the file Demo_014.m. Designing the robust estimator proceeds as follows:

% Define plant (see script for system matrices) 
H = ss(A,[Bp,Bw],[Cq;Cz;Cy],[Dqp,Dqw;Dzp,Dzw;Dyp,Dyw]);

% Define uncertainties
de1 = iqcdelta('de1','InputChannel',1,'OutputChannel',1, 'Bounds',[-1,1]);
de1 = iqcassign(de1,'ultis','Length',3);

de2 = iqcdelta('de2','InputChannel',2,'OutputChannel',2, 'Bounds',[-1,1]);
de2 = iqcassign(de2,'ultis','Length',3);

% set options
options.perf      = 'H2';
options.StrProp   = 'yes';
options.subopt    = 1.03;
options.constants = 1e-8*ones(1,4);
options.Pi11pos   = 1e-8;
options.FeasbRad  = 1e9;

[Erob,gamrob]     = fRobest(H,{de1,de2},[2,1,1],[2,2],options);

We obtain a nominal and robust estimator, E_\mathrm{nom} and E_\mathrm{rob} respectively, which guarantee a nominal and robust H_2 performance level of 0.82 and 1.78 respectively. The corresponding Bode-magnitude plots are depicted in the following figure.

Given E_\mathrm{nom} and E_\mathrm{rob} we can also perform a robustness analysis using the function ‘iqcanalysis’. This yields the following computed worst-case H_2 perfomormance levels for increasing levels of \alpha with |\delta_\mathrm{c}|<\alpha, |\delta_\mathrm{k}|<\alpha.

As can be seen, the nominal estimator, E_\mathrm{nom}, shows better performance levels for smaller values of \alpha, while for \alpha>0.9 the robust estimator, E_\mathrm{rob}, outperforms E_\mathrm{nom}.

To continue, let us also show some time-domain simulations, where we perturb the system with a random force disturbance and for different values of \delta_\mathrm{k}=\delta_\mathrm{c}\in[-1,1]. The results are shown in the following two figures for E_\mathrm{nom} and E_\mathrm{rob} respectively.

As can be seen, the robust estimator E_\mathrm{rob} does a better job, if compared to E_\mathrm{nom}. This is confirmed by the computed RMS values which are given in the following table.

\delta_\mathrm{k}=\delta_\mathrm{c}=-1-0.500.51Mean
RMS value E_\mathrm{nom}0.0590.0690.0740.1110.0680.076
RMS value E_\mathrm{rob}0.0220.0260.0280.0430.0260.029
Computed RMS values for different values of the uncertainties.