ultv_rb: LTV rate-bounded parametric uncertainties

The class ultv_rb is defined by LTV rate-bounded parametric uncertainties of the form:

    \[\left(\begin{array}{ccc}\delta_1I_{nr_1}&\cdots& 0\\\vdots&\ddots& \vdots\\0&\cdots& \delta_NI_{nr_N}\end{array}\right) .\]

Here

  • \delta_i\in\mathbf{\delta}_i, i\in\{1,\ldots,N\}.
  • \mathbf{\delta}_i=\left\{\delta_i(\cdot)\in C^1([0,\infty),\mathbb{R}):(\delta_i(t),\dot{\delta}_i(t))\in\Lambda\forall t\geq0\right\}
  • \Lambda is assumed to be star convex: [0,1]\Lambda\subset\Lambda.

The ultv_rb class can be defined by

  • \Delta_\mathrm{ultv\_ rm}=ultv\_ rm('name')
  • \Delta_\mathrm{ultv\_ rm}=ultv\_ rm('name',varargin)

Just specifying \Delta_\mathrm{ultv\_ rm}=ultv\_ rm('name') defines a rate-bounded LTV parametric uncertainty \delta with \delta\in[-1,1] and \dot{\delta}\in[-1,1] , which is repeated once.

Specifying and/or changing properties proceeds as summarized in the following two tables for properties related to the uncertainty and to IQC-multiplier respectively.

PropertyDescription
NumberOfRepetitions Specify the number of repetitions of the uncertainty (default = 1).

Note: In case of more than one uncertainty, one needs to specify the number of repetitions as [nr_1,\ldots,nr_N].
BoundsSpecify the domain on which the uncertainty is defined (default = \left[-1;1\right]).

    \[\left[\begin{array}{ccc}-\delta_1&\cdots&-\delta_N\\\delta_1&\cdots&\delta_N\end{array}\right]\]

RateBoundsSpecify the domain on which the uncertainty is rate-bounded (default = \left[-1;1\right]).

    \[\left[\begin{array}{ccc}-\dot{\delta}_1&\cdots&- \dot{\delta} _N\\ \dot{\delta} _1&\cdots& \dot{\delta} _N\end{array}\right]\]

PolytopeAlternatively, instead of using the option Bounds/RateBounds one can specify the option Polytope:

    \[\left[\begin{array}{ccccc}\delta_1^{p_1}&\dot{\delta}_1^{p_1}& \cdots& \delta_N^{p_1} & \dot{\delta}_N^{p_1} \\ \vdots& \vdots& \cdots& \vdots& \vdots\\  \delta_1^{p_M}&\dot{\delta}_1^{p_M}&\cdots& \delta_N^{p_M} & \dot{\delta}_N^{p_M} \end{array}\right]\]


Note: It is always assumed that the 0 is contained in the set.
InputChannel/ OutputChannelSpecify which input and output channels of the uncertain plant are affected by \Delta_\mathrm{ultv\_ rm}. For each \delta_i, the channels should be specified as:

    \[\begin{array}{c} row_{in,i}=\left[\begin{array}{ccc}C_{x_i}^{in}&\cdots&C_{y_i}^{in}\end{array}\right]\\row_{out,i}=\left[\begin{array}{ccc}C_{v_i}^{in}&\cdots&C_{w_i}^{in}\end{array}\right] \end{array} \]


Here the order of the channels is not relevant, while C_{m_i}^{in}, C_{n_i}^{out} respectively denote the m^{th} and n^{th} in- and output channel of the uncertain plant M. Note here thatthe row length of row_{in,i} and row_{out,i} equals the number of repetitions of \delta_i. The option InputChannel/ OutputChannel should then be specified as a cell:

    \[ \begin{array}{c}InputChannel= \\ =\left\{\!\!\!\begin{array}{ccc}row_{in,1}\!\!\!&\cdots\!\!\!& row_{in,N} \end{array}\!\!\!\right\}\\OutputChannel =\\ =\left\{\!\!\!\begin{array}{ccc} row_{out,1}\!\!\!\!&\cdots\!\!\!\!&row_{ out ,N} \end{array}\!\!\!\right\}\end{array}  \]

Uncertainty characteristics

PropertyDescription
BasisFunctionTypeSpecify the type of basis function to be used in the multiplier (default = 1). See link for further details.
LengthSpecify the length of the basis function (default = 1).

Note: In case of multiple diagonally repeated uncertainties, one can specify one common length, or a different one for each \delta_i respectively as l or [l_1,l_2,\ldots]. See link for further details.
PoleLocationSpecify the pole location of the basis function (default = -1).

Note: In case of multiple diagonally repeated uncertainties, one can specify one common pole-location, or a different one for each \delta_i respectively as pl or [pl_1,pl_2,\ldots]. See link for further details.
SampleTimeSpecify the sample time (default = 0).
RelaxationTypeSpecify the relaxation type. Options are (default = ‘DG’):
– DG-scalings: ‘DG’
– Convex hull relaxation: ‘CH’
– Partial convexity: ‘PC’
– Zeroth order Polya relaxation: ‘ZP’
RelaxationPropSpecify the relaxation constraint type. Options are (default = ‘S’)
– Static relaxation constraints: ‘S’
– Dynamic relaxation constraints: ‘D’
PrimalDualSpecify whether the multiplier should be a primal/dual parametrization (default = ‘Primal’).
– Primal multipliers: ‘Primal’
– Dual multipliers: ‘Dual’

Note: For a standard IQC-analysis, all multipliers must be primal ones.
Multiplier characteristics

Note: See Section 5.4 of [1] for the details on the mathematical derivation of the IQC-multiplier.

Previous page